Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Geroscience ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641753

RESUMO

Chronic, low-grade inflammation increases with aging, contributing to functional declines and diseases that reduce healthspan. Growing evidence suggests that transcripts from repetitive elements (RE) in the genome contribute to this "inflammaging" by stimulating innate immune activation, but evidence of RE-associated inflammation with aging in humans is limited. Here, we present transcriptomic and clinical data showing that RE transcript levels are positively related to gene expression of innate immune sensors, and to serum interleukin 6 (a marker of systemic inflammation), in a large group of middle-aged and older adults. We also: (1) use transcriptomics and whole-genome bisulfite (methylation) sequencing to show that many RE may be hypomethylated with aging, and that aerobic exercise, a healthspan-extending intervention, reduces RE transcript levels and increases RE methylation in older adults; and (2) extend our findings in a secondary dataset demonstrating age-related changes in RE chromatin accessibility. Collectively, our data support the idea that age-related RE transcript accumulation may play a role in inflammaging in humans, and that RE dysregulation with aging may be due in part to upstream epigenetic changes.

2.
Am J Physiol Heart Circ Physiol ; 326(5): H1279-H1290, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517225

RESUMO

The circulating milieu, bioactive molecules in the bloodstream, is altered with aging and interfaces constantly with the vasculature. This anatomic juxtaposition suggests that circulating factors may actively modulate arterial function. Here, we developed a novel, translational experimental model that allows for direct interrogation of the influence of the circulating milieu on age-related arterial dysfunction (aortic stiffening and endothelial dysfunction). To do so, we exposed young and old mouse arteries to serum from young and old mice and young and midlife/older (ML/O) adult humans. We found that old mouse and ML/O adult human, but not young, serum stiffened young mouse aortic rings, assessed via elastic modulus (mouse and human serum, P = 0.003 vs. young serum control), and impaired carotid artery endothelial function, assessed by endothelium-dependent dilation (EDD) (mouse serum, P < 0.001; human serum, P = 0.006 vs. young serum control). Furthermore, young mouse and human, but not old, serum reduced aortic elastic modulus (mouse serum, P = 0.009; human serum, P < 0.001 vs. old/MLO serum control) and improved EDD (mouse and human serum, P = 0.015 vs. old/MLO serum control) in old arteries. In human serum-exposed arteries, in vivo arterial function assessed in the human donors correlated with circulating milieu-modulated arterial function in young mouse arteries (aortic stiffness, r = 0.634, P = 0.005; endothelial function, r = 0.609, P = 0.004) and old mouse arteries (aortic stiffness, r = 0.664, P = 0.001; endothelial function, r = 0.637, P = 0.003). This study establishes novel experimental approaches for directly assessing the effects of the circulating milieu on arterial function and implicates changes in the circulating milieu as a mechanism of in vivo arterial aging.NEW & NOTEWORTHY Changes in the circulating milieu with advancing age may be a mechanism underlying age-related arterial dysfunction. Ex vivo exposure of young mouse arteries to the circulating milieu from old mice or midlife/older adults impairs arterial function whereas exposure of old mouse arteries to the circulating milieu from young mice or young adults improves arterial function. These findings establish that the circulating milieu directly influences arterial function with aging.


Assuntos
Envelhecimento , Endotélio Vascular , Camundongos Endogâmicos C57BL , Rigidez Vascular , Vasodilatação , Animais , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Endotélio Vascular/fisiopatologia , Idoso , Fatores Etários , Camundongos , Aorta/fisiopatologia , Artérias Carótidas/fisiopatologia , Adulto Jovem , Módulo de Elasticidade
3.
Geroscience ; 46(3): 3311-3324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265578

RESUMO

Declines in physiological function with aging are strongly linked to age-related diseases. Lifelong voluntary aerobic exercise (LVAE) preserves physiological function with aging, possibly by increasing cellular quality control processes, but the circulating molecular transducers mediating these processes are incompletely understood. The plasma metabolome may predict biological aging and is impacted by a single bout of aerobic exercise. Here, we conducted an ancillary analysis using plasma samples, and physiological function data, from previously reported studies of LVAE in male C57BL/6N mice randomized to LVAE (wheel running) or sedentary (SED) (n = 8-9/group) to determine if LVAE alters the plasma metabolome and whether these changes correlated with preservation of physiological function with LVAE. Physical function (grip strength, coordination, and endurance) was assessed at 3 and 18 months of age; vascular endothelial function and the plasma metabolome were assessed at 19 months. Physical function was preserved (%decline; mean ± SEM) with LVAE vs SED (all p < 0.05)-grip strength, 0.4 ± 1.7% vs 12 ± 4.0%; coordination, 10 ± 4% vs 73 ± 10%; endurance, 1 ± 15% vs 61 ± 5%. Vascular endothelial function with LVAE (88.2 ± 2.0%) was higher than SED (79.1 ± 2.5%; p = 0.03) and similar to the young controls (91.4 ± 2.9%). Fifteen metabolites were different with LVAE compared to SED (FDR < 0.05) and correlated with the preservation of physiological function. Plasma spermidine, a polyamine that increases cellular quality control (e.g., autophagy), correlated with all assessed physiological indices. Autophagy (LC3A/B abundance) was higher in LVAE skeletal muscle compared to SED (p < 0.01) and inversely correlated with plasma spermidine (r = - 0.5297; p = 0.054). These findings provide novel insight into the circulating molecular transducers by which LVAE may preserve physiological function with aging.


Assuntos
Atividade Motora , Espermidina , Camundongos , Masculino , Animais , Espermidina/metabolismo , Camundongos Endogâmicos C57BL , Envelhecimento/fisiologia , Músculo Esquelético/metabolismo
4.
Med Sci Sports Exerc ; 56(2): 266-276, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707508

RESUMO

PURPOSE: This study aimed to determine if time-efficient, high-resistance inspiratory muscle strength training (IMST), comprising 30 inhalation-resisted breaths per day, improves cardiorespiratory fitness, exercise tolerance, physical function, and/or regional body composition in healthy midlife and older adults. METHODS: We performed a double-blind, randomized, sham-controlled clinical trial (NCT03266510) testing 6 wk of IMST (30 breaths per day, 6 d·wk -1 , 55%-75% maximal inspiratory pressure) versus low-resistance sham training (15% maximal inspiratory pressure) in healthy men and women 50-79 yr old. Subjects performed a graded treadmill exercise test to exhaustion, physical performance battery (e.g., handgrip strength, leg press), and body composition testing (dual x-ray absorptiometry) at baseline and after 6 wk of training. RESULTS: Thirty-five participants (17 women, 18 men) completed high-resistance IMST ( n = 17) or sham training ( n = 18). Cardiorespiratory fitness (V̇O 2peak ) was unchanged, but exercise tolerance, measured as treadmill exercise time during a graded exercise treadmill test, increased with IMST (baseline, 539 ± 42 s; end intervention, 606 ± 42 s; P = 0.01) but not sham training (baseline, 562 ± 39 s; end intervention, 553 ± 38 s; P = 0.69). IMST increased peak RER (baseline, 1.09 ± 0.02; end intervention, 1.13 ± 0.02; P = 0.012), peak ventilatory efficiency (baseline, 25.2 ± 0.8; end intervention, 24.6 ± 0.8; P = 0.036), and improved submaximal exercise economy (baseline, 23.5 ± 1.1 mL·kg -1 ⋅min -1 ; end intervention, 22.1 ± 1.1 mL·kg -1 ⋅min -1 ; P < 0.001); none of these factors were altered by sham training (all P > 0.05). Changes in plasma acylcarnitines (targeted metabolomics analysis) were consistently positively correlated with changes in exercise tolerance after IMST but not sham training. IMST was associated with regional increases in thorax lean mass (+4.4%, P = 0.06) and reductions in trunk fat mass (-4.8%, P = 0.04); however, peripheral muscle strength, muscle power, dexterity, and mobility were unchanged. CONCLUSIONS: These data suggest that high-resistance IMST is an effective, time-efficient lifestyle intervention for improving exercise tolerance in healthy midlife and older adults.


Assuntos
Tolerância ao Exercício , Treinamento de Força , Idoso , Feminino , Humanos , Masculino , Força da Mão , Força Muscular/fisiologia , Músculos , Terapia Respiratória , Método Duplo-Cego
5.
Am J Physiol Heart Circ Physiol ; 326(3): H490-H496, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133618

RESUMO

Vaping has risen substantially in recent years, particularly among young adults. Electronic (e-) hookahs are a newer category of vaping devices touted as safer tobacco alternatives. Although e-hookah vaping acutely reduces endothelial function, the role of nicotine and the mechanisms by which it may impair endothelial function remain understudied. In a randomized crossover study, we investigated the acute effects of vaping e-hookah, with and without nicotine, as compared with sham on endothelial function assessed by brachial artery flow-mediated dilation (FMD), among 18 overtly healthy young adults. To determine the role of changes in circulating factors in plasma on endothelial cell function, human umbilical vein endothelial cells (HUVECs) were cultured with participants' plasma, and acetylcholine-stimulated nitric oxide (NO) production and basal reactive oxygen species (ROS) bioactivity were assessed. Plasma nicotine was measured before and after the sessions. E-hookah vaping with nicotine, which acutely increased heart rate (HR) by 8 ± 3 beats/min and mean arterial pressure (MAP) by 7 ± 2 mmHg (means ± SE; P < 0.05), decreased endothelial-dependent FMD by 1.57 ± 0.19%Δ (P = 0.001), indicating impairment in endothelial function. Vaping e-hookah without nicotine, which mildly increased hemodynamics (HR, 2 ± 2 beats/min and MAP 1 ± 1 mmHg; P = ns), did not significantly impair endothelial function. No changes were observed after sham vaping. HUVECs cultured with participants' plasma after versus before e-hookah vaping with nicotine, but not without nicotine or sham vaping, exhibited reductions in endothelial cell NO bioavailability and increases in ROS bioactivity (P < 0.05). Plasma nicotine concentrations increased after vaping e-hookah with nicotine (6.7 ± 1.8 ng/mL; P = 0.002), whereas no changes were observed after vaping e-hookah without nicotine or sham (P = ns). Acute e-hookah vaping induces endothelial dysfunction by impairing NO bioavailability associated with increased ROS production, and these effects are attributable to nicotine, not to nonnicotine constituents, present in the flavored e-liquid.NEW & NOTEWORTHY Despite safety claims heavily advertised by the hookah tobacco industry, acute e-hookah vaping induces in vivo endothelial dysfunction by impairing ex vivo NO bioavailability associated with increased ROS production. These effects are attributable to nicotine, not to nonnicotine constituents, present in the flavored e-liquid.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Cachimbos de Água , Vaping , Fumar Cachimbo de Água , Adulto Jovem , Humanos , Vaping/efeitos adversos , Nicotina , Células Endoteliais , Espécies Reativas de Oxigênio , Estudos Cross-Over
6.
Aging Cell ; : e14060, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062873

RESUMO

Cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to age-related arterial dysfunction, in part, by promoting oxidative stress and inflammation, which reduce the bioavailability of the vasodilatory molecule nitric oxide (NO). In the present study, we assessed the efficacy of fisetin, a natural compound, as a senolytic to reduce vascular cell senescence and SASP factors and improve arterial function in old mice. We found that fisetin decreased cellular senescence in human endothelial cell culture. In old mice, vascular cell senescence and SASP-related inflammation were lower 1 week after the final dose of oral intermittent (1 week on-2 weeks off-1 weeks on dosing) fisetin supplementation. Old fisetin-supplemented mice had higher endothelial function. Leveraging old p16-3MR mice, a transgenic model allowing genetic clearance of p16INK4A -positive senescent cells, we found that ex vivo removal of senescent cells from arteries isolated from vehicle- but not fisetin-treated mice increased endothelium-dependent dilation, demonstrating that fisetin improved endothelial function through senolysis. Enhanced endothelial function with fisetin was mediated by increased NO bioavailability and reduced cellular- and mitochondrial-related oxidative stress. Arterial stiffness was lower in fisetin-treated mice. Ex vivo genetic senolysis in aorta rings from p16-3MR mice did not further reduce mechanical wall stiffness in fisetin-treated mice, demonstrating lower arterial stiffness after fisetin was due to senolysis. Lower arterial stiffness with fisetin was accompanied by favorable arterial wall remodeling. The findings from this study identify fisetin as promising therapy for clinical translation to target excess cell senescence to treat age-related arterial dysfunction.

7.
Am J Physiol Heart Circ Physiol ; 325(5): H1059-H1068, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37682232

RESUMO

Aging is associated with increased risk for cognitive decline and dementia due in part to increases in systolic blood pressure (SBP) and cerebrovascular dysfunction. High-resistance inspiratory muscle strength training (IMST) is a time-efficient, intensive respiratory training protocol (30 resisted inspirations/day) that lowers SBP and improves peripheral vascular function in midlife/older adults with above-normal SBP. However, whether, and by what mechanisms, IMST can improve cerebrovascular function is unknown. We hypothesized that IMST would increase cerebrovascular reactivity to hypercapnia (CVR to CO2), which would coincide with changes to the plasma milieu that improve brain endothelial cell function and enhance cognitive performance (NIH Toolbox). We conducted a 6-wk double-blind, randomized, controlled clinical trial investigating high-resistance IMST [75% maximal inspiratory pressure (PImax); 6×/wk; 4 females, 5 males] vs. low-resistance sham training (15% PImax; 6×/wk; 2 females, 5 males) in midlife/older adults (age 50-79 yr) with initial above-normal SBP. Human brain endothelial cells (HBECs) were exposed to participant plasma and assessed for acetylcholine-stimulated nitric oxide (NO) production. CVR to CO2 increased after high-resistance IMST (pre: 1.38 ± 0.66 cm/s/mmHg; post: 2.31 ± 1.02 cm/s/mmHg, P = 0.020). Acetylcholine-stimulated NO production increased in HBECs exposed to plasma from after vs. before the IMST intervention [pre: 1.49 ± 0.33; post: 1.73 ± 0.35 arbitrary units (AU); P < 0.001]. Episodic memory increased modestly after the IMST intervention (pre: 95 ± 13; post: 103 ± 17 AU; P = 0.045). Cerebrovascular and cognitive function were unchanged in the sham control group. High-resistance IMST may be a promising strategy to improve cerebrovascular and cognitive function in midlife/older adults with above-normal SBP, a population at risk for future cognitive decline and dementia.NEW & NOTEWORTHY Midlife/older adults with above-normal blood pressure are at increased risk of developing cognitive decline and dementia. Our findings suggest that high-resistance inspiratory muscle strength training (IMST), a novel, time-efficient (5-10 min/day) form of physical training, may increase cerebrovascular reactivity to CO2 and episodic memory in midlife/older adults with initial above-normal blood pressure.


Assuntos
Demência , Treinamento de Força , Masculino , Feminino , Humanos , Idoso , Pessoa de Meia-Idade , Dióxido de Carbono , Acetilcolina , Células Endoteliais , Músculos Respiratórios/fisiologia , Força Muscular/fisiologia
8.
Nitric Oxide ; 140-141: 1-7, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657532

RESUMO

SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), induces vascular endothelial dysfunction, but the mechanisms are unknown. We tested the hypothesis that the "circulating milieu" (plasma) of patients with COVID-19 would cause endothelial cell dysfunction (characterized by lower nitric oxide (NO) production), which would be linked to greater reactive oxygen species (ROS) bioactivity and depletion of the critical metabolic co-substrate, nicotinamide adenine dinucleotide (NAD+). We also investigated if treatment with NAD+-boosting compounds would prevent COVID-19-induced reductions in endothelial cell NO bioavailability and oxidative stress. Human aortic endothelial cells (HAECs) were exposed to plasma from men and women (age 18-85 years) who were hospitalized and tested positive (n = 34; 20 M) or negative (n = 13; 10 M) for COVID-19. HAECs exposed to plasma from patients with COVID-19 also were co-incubated with NAD+ precursors nicotinamide riboside (NR) or nicotinamide mononucleotide (NMN). Acetylcholine-stimulated NO production was 27% lower and ROS bioactivity was 54% higher in HAECs exposed to plasma from patients with COVID-19 (both p < 0.001 vs. control); these responses were independent of age and sex. NAD+ concentrations were 30% lower in HAECs exposed to plasma from patients with COVID-19 (p = 0.001 vs. control). Co-incubation with NR abolished COVID-19-induced reductions in NO production and oxidative stress (both p > 0.05 vs. control). Co-treatment with NMN produced similar results. Our findings suggest the circulating milieu of patients with COVID-19 promotes endothelial cell dysfunction, characterized by lower NO bioavailability, greater ROS bioactivity, and NAD+ depletion. Supplementation with NAD+ precursors may exert a protective effect against COVID-19-evoked endothelial cell dysfunction and oxidative stress.


Assuntos
COVID-19 , NAD , Masculino , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , NAD/metabolismo , NAD/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2 , Estresse Oxidativo , Mononucleotídeo de Nicotinamida/metabolismo , Mononucleotídeo de Nicotinamida/farmacologia
9.
Hypertension ; 80(10): 2072-2087, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37593877

RESUMO

BACKGROUND: Here, we assessed the role of cellular senescence and the senescence associated secretory phenotype (SASP) in age-related aortic stiffening and endothelial dysfunction. METHODS: We studied young (6-8 mo) and old (27-29 mo) p16-3MR mice, which allows for genetic-based clearance of senescent cells with ganciclovir (GCV). We also treated old C57BL/6N mice with the senolytic ABT-263. RESULTS: In old mice, GCV reduced aortic stiffness assessed by aortic pulse wave velocity (PWV; 477±10 vs. 382±7 cm/s, P<0.05) to young levels (old-GCV vs. young-vehicle, P=0.35); ABT-263 also reduced aortic PWV in old mice (446±9 to 356±11 cm/s, P<0.05). Aortic adventitial collagen was reduced by GCV (P<0.05) and ABT-263 (P=0.12) in old mice. To show an effect of the circulating SASP, we demonstrated that plasma exposure from Old-vehicle p16-3MR mice, but not from Old-GCV mice, induced aortic stiffening assessed ex vivo (elastic modulus; P<0.05). Plasma proteomics implicated glycolysis in circulating SASP-mediated aortic stiffening. In old p16-3MR mice, GCV increased endothelial function assessed via peak carotid artery endothelium-dependent dilation (EDD; Old-GCV, 94±1% vs. Old-vehicle, 84±2%, P<0.05) to young levels (Old-GCV vs. young-vehicle, P=0.98), and EDD was higher in old C57BL/6N mice treated with ABT-263 vs. vehicle (96±1% vs. 82±3%, P<0.05). Improvements in endothelial function were mediated by increased nitric oxide (NO) bioavailability (P<0.05) and reduced oxidative stress (P<0.05). Circulating SASP factors related to NO signaling were associated with greater NO-mediated EDD following senescent cell clearance. CONCLUSIONS: Cellular senescence and the SASP contribute to vascular aging and senolytics hold promise for improving age-related vascular function.


Assuntos
Senoterapia , Doenças Vasculares , Camundongos , Animais , Camundongos Endogâmicos C57BL , Análise de Onda de Pulso , Senescência Celular , Envelhecimento , Artérias , Óxido Nítrico
10.
Am J Physiol Regul Integr Comp Physiol ; 325(3): R269-R279, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37449870

RESUMO

Previous studies show that COVID-19 survivors have elevated muscle sympathetic nerve activity (MSNA), endothelial dysfunction, and aortic stiffening. However, the neurovascular responses to mental stress and exercise are still unexplored. We hypothesized that COVID-19 survivors, compared with age- and body mass index (BMI)-matched control subjects, exhibit abnormal neurovascular responses to mental stress and physical exercise. Fifteen severe COVID-19 survivors (aged: 49 ± 2 yr, BMI: 30 ± 1 kg/m2) and 15 well-matched control subjects (aged: 46 ± 3 yr, BMI: 29 ± 1 kg/m2) were studied. MSNA (microneurography), forearm blood flow (FBF), and forearm vascular conductance (FVC, venous occlusion plethysmography), mean arterial pressure (MAP, Finometer), and heart rate (HR, ECG) were measured during a 3-min mental stress (Stroop Color-Word Test) and during a 3-min isometric handgrip exercise (30% of maximal voluntary contraction). During mental stress, MSNA (frequency and incidence) responses were higher in COVID-19 survivors than in controls (P < 0.001), and FBF and FVC responses were attenuated (P < 0.05). MAP was similar between the groups (P > 0.05). In contrast, the MSNA (frequency and incidence) and FBF and FVC responses to handgrip exercise were similar between the groups (P > 0.05). MAP was lower in COVID-19 survivors (P < 0.05). COVID-19 survivors exhibit an exaggerated MSNA and blunted vasodilatory response to mental challenge compared with healthy adults. However, the neurovascular response to handgrip exercise is preserved in COVID-19 survivors. Overall, the abnormal neurovascular control in response to mental stress suggests that COVID-19 survivors may have an increased risk to cardiovascular events during mental challenge.


Assuntos
COVID-19 , Força da Mão , Adulto , Humanos , Pessoa de Meia-Idade , Pressão Sanguínea/fisiologia , Hemodinâmica , Exercício Físico/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático , Antebraço/irrigação sanguínea , Músculo Esquelético/inervação
11.
Am J Physiol Heart Circ Physiol ; 325(1): H187-H194, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326998

RESUMO

Excessive reactive oxygen species production by mitochondria (mtROS) is a key contributor to age-related vascular endothelial dysfunction. We recently showed in a crossover design, placebo-controlled clinical trial in older adults that 6 wk of treatment with the mitochondria-targeted antioxidant (MitoQ) improved endothelial function, as measured by nitric oxide (NO)-mediated endothelium-dependent dilation (EDD), by lowering mtROS and was associated with reduced circulating levels of oxidized low-density lipoprotein (oxLDL). Here, we conducted an ancillary analysis using plasma samples from our clinical trial to determine if MitoQ treatment-mediated changes in the "circulating milieu" (plasma) contribute to improvements in endothelial function and the mechanisms involved. With the use of an ex vivo model of endothelial function, acetylcholine-stimulated NO production was quantified in human aortic endothelial cells (HAECs) exposed to plasma collected after chronic MitoQ and placebo supplementation in 19 older adults (67 ± 1 yr; 11 females). We also assessed the influence of plasma on endothelial cell (EC) mtROS bioactivity and the role of lower circulating oxLDL in plasma-mediated changes. NO production was ∼25% higher (P = 0.0002) and mtROS bioactivity was ∼25% lower (P = 0.003) in HAECs exposed to plasma collected from subjects after MitoQ treatment versus placebo. Improvements in NO production ex vivo and NO-mediated EDD in vivo with MitoQ were correlated (r = 0.4683; P = 0.0431). Increasing oxLDL in plasma collected after MitoQ to placebo levels abolished MitoQ treatment effects on NO production and mtROS bioactivity, whereas inhibition of endogenous oxLDL binding to its lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) prevented these effects. These findings provide novel insight into the mechanisms by which MitoQ treatment improves endothelial function in older adults.NEW & NOTEWORTHY Chronic supplementation with a mitochondria-targeted antioxidant (MitoQ) improves vascular endothelial function in older adults, but the mechanisms of action are incompletely understood. Here, we show that MitoQ supplementation leads to changes in the circulating milieu (plasma), including reductions in oxidized low-density lipoprotein that enhance nitric oxide production and reduce mitochondrial oxidative stress in endothelial cells. These findings provide new information regarding the mechanisms by which MitoQ improves age-related endothelial dysfunction.


Assuntos
Antioxidantes , Doenças Vasculares , Idoso , Feminino , Humanos , Antioxidantes/uso terapêutico , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Doenças Vasculares/metabolismo , Estudos Cross-Over
12.
Physiol Rep ; 11(1): e15561, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636757

RESUMO

Patients with chronic kidney disease (CKD) are more likely to die of cardiovascular diseases, including cerebrovascular disease, than to progress to end-stage kidney disease. Cerebrovascular dysfunction, characterized by reduced cerebrovascular reactivity, cerebral hypoperfusion, and increased pulsatile flow within the brain, precedes the onset of dementia and is linked to cognitive dysfunction. However, whether impaired cerebrovascular function is present in non-dialysis dependent CKD is largely unknown. Using transcranial Doppler, we compared middle cerebral artery (MCA) blood velocity response to hypercapnia (normalized for blood pressure and end-tidal CO2 ; a measure of cerebrovascular reactivity) and MCA pulsatility index (PI; a measure of cerebrovascular stiffness) in patients with stage 3-4 CKD vs. age-matched healthy controls. We also administered the NIH cognitive toolbox (cognitive function), measured carotid-femoral pulse-wave velocity (PWV; aortic stiffness), and assessed ex vivo nitric oxide (NO) and reactive oxygen species (ROS) production from human brain endothelial cells incubated with serum obtained from study participants. MCA PI was higher in patients with CKD vs. controls; however, normalized MCA blood velocity response to hypercapnia did not differ between groups. Similar results were observed in a validation cohort of midlife and older adults divided by the median estimated glomerular filtration rate (eGFR). MCA PI was associated with greater large-elastic artery stiffness (carotid-femoral PWV), worse executive function (trails B time), lower eGFR, and higher ex vivo ROS production. These data suggest that impaired kidney function is associated with greater cerebrovascular stiffness, which may contribute to the known increased risk for cognitive impairment in patients with CKD.


Assuntos
Insuficiência Renal Crônica , Rigidez Vascular , Humanos , Idoso , Células Endoteliais , Hipercapnia , Espécies Reativas de Oxigênio , Pressão Sanguínea/fisiologia , Rigidez Vascular/fisiologia , Circulação Cerebrovascular/fisiologia , Análise de Onda de Pulso/métodos
13.
Hypertension ; 80(2): 470-481, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36416143

RESUMO

BACKGROUND: COVID-19 has become a dramatic health problem during this century. In addition to high mortality rate, COVID-19 survivors are at increased risk for cardiovascular diseases 1-year after infection. Explanations for these manifestations are still unclear but can involve a constellation of biological alterations. We hypothesized that COVID-19 survivors compared with controls exhibit sympathetic overdrive, vascular dysfunction, cardiac morpho-functional changes, impaired exercise capacity, and increased oxidative stress. METHODS: Nineteen severe COVID-19 survivors and 19 well-matched controls completed the study. Muscle sympathetic nerve activity (microneurography), brachial artery flow-mediated dilation and blood flow (Doppler-Ultrasound), carotid-femoral pulse wave velocity (Complior), cardiac morpho-functional parameters (echocardiography), peak oxygen uptake (cardiopulmonary exercise testing), and oxidative stress were measured ~3 months after hospital discharge. Complementary experiments were conducted on human umbilical vein endothelial cells cultured with plasma samples from subjects. RESULTS: Muscle sympathetic nerve activity and carotid-femoral pulse wave velocity were greater and brachial artery flow-mediated dilation, brachial artery blood flow, E/e' ratio, and peak oxygen uptake were lower in COVID-19 survivors than in controls. COVID-19 survivors had lower circulating antioxidant markers compared with controls, but there were no differences in plasma-treated human umbilical vein endothelial cells nitric oxide production and reactive oxygen species bioactivity. Diminished peak oxygen uptake was associated with sympathetic overdrive, vascular dysfunction, and reduced diastolic function in COVID-19 survivors. CONCLUSIONS: Our study revealed that COVID-19 survivors have sympathetic overactivation, vascular dysfunction, cardiac morpho-functional changes, and reduced exercise capacity. These findings indicate the need for further investigation to determine whether these manifestations are persistent longer-term and their impact on the cardiovascular health of COVID-19 survivors.


Assuntos
COVID-19 , Doenças Vasculares , Rigidez Vascular , Humanos , Endotélio Vascular , Análise de Onda de Pulso , Tolerância ao Exercício , Células Endoteliais , Artéria Braquial , Oxigênio , Rigidez Vascular/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-36337728

RESUMO

The development of age-related cardiovascular (CV) dysfunction increases the risk of CV disease as well as other chronic age-associated disorders, including chronic kidney disease, and Alzheimer's disease and related dementias. Major manifestations of age-associated CV dysfunction that increase disease risk are vascular dysfunction, primarily vascular endothelial dysfunction and arterial stiffening, and elevated systolic blood pressure. Declines in nitric oxide bioavailability secondary to increased oxidative stress and inflammation are established mechanisms of CV dysfunction with aging. Moreover, fundamental mechanisms of aging, termed the "hallmarks of aging" extend to the CV system and, as such, may be considered "hallmarks of CV aging". These mechanisms represent viable therapeutic targets for treating CV dysfunction with aging. Healthy lifestyle behaviors, such as regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies to prevent and/or treat age-associated CV dysfunction. Despite the well-established benefits of these strategies, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related CV dysfunction. Targeting fundamental mechanisms of CV aging with interventions such as time-efficient exercise training, food-derived molecules, termed nutraceuticals, or select synthetic pharmacological agents represents a promising approach. In the present review, we will highlight emerging topics in the field of healthy CV aging with a specific focus on how exercise, nutrition/dietary patterns, nutraceuticals and select synthetic pharmacological compounds may promote healthy CV aging, in part, by targeting the hallmarks of CV aging.

16.
Front Physiol ; 13: 980783, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187760

RESUMO

Background: Cardiovascular disease (CVD) is the leading cause of death worldwide and aging is the primary risk factor for the development of CVD. The increased risk of CVD with aging is largely mediated by the development of vascular dysfunction. Excessive production of mitochondrial reactive oxygen species (mtROS) is a key mechanism of age-related vascular dysfunction. Therefore, establishing the efficacy of therapies to reduce mtROS to improve vascular function with aging is of high biomedical importance. Previously, in a small, randomized, crossover-design pilot clinical trial, our laboratory obtained initial evidence that chronic oral supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular function in healthy older adults. Here, we describe the protocol for an ongoing R01-funded phase IIa clinical trial to establish the efficacy of MitoQ as a therapy to improve vascular function in older adults (ClinicalTrials.gov Identifier: NCT04851288). Outcomes: The primary outcome of the study is nitric oxide (NO)-mediated endothelium-dependent dilation (EDD) as assessed by brachial artery flow-mediated dilation (FMDBA). Secondary outcomes include mtROS-mediated suppression of EDD, aortic stiffness as measured by carotid-femoral pulse wave velocity, carotid compliance and ß-stiffness index, and intima media thickness. Other outcomes include the assessment of endothelial mitochondrial health and oxidative stress in endothelial cells obtained by endovascular biopsy; the effect of altered circulating factors following MitoQ treatment on endothelial cell NO bioavailability and whole cell and mitochondrial reactive oxygen species production ex vivo; and circulating markers of oxidative stress, antioxidant status, and inflammation. Methods: We are conducting a randomized, placebo-controlled, double-blind, parallel group, phase IIa clinical trial in 90 (45/group) healthy older men and women 60 years of age or older. Participants complete baseline testing and are then randomized to either 3 months of oral MitoQ (20 mg; once daily) or placebo supplementation. Outcome measures are assessed at the midpoint of treatment, i.e., 6 weeks, and again at the conclusion of treatment. Discussion: This study is designed to establish the efficacy of chronic supplementation with the mitochondrial-targeted antioxidant MitoQ for improving vascular endothelial function and reducing large elastic artery stiffness in older adults, and to investigate the mechanisms by which MitoQ supplementation improves endothelial function.

17.
Front Physiol ; 13: 967478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105300

RESUMO

Background: High blood pressure (BP), particularly systolic BP (SBP), is the major modifiable risk factor for cardiovascular diseases and related disorders of aging. SBP increases markedly with aging in women such that the prevalence of above-normal SBP (i.e., ≥120 mmHg) in postmenopausal women exceeds rates in age-matched men. This increase in SBP is associated with vascular endothelial dysfunction, mediated by excessive reactive oxygen species-induced oxidative stress and consequent reductions in nitric oxide bioavailability. Moderate-intensity aerobic exercise is a recommended lifestyle strategy for reducing SBP. However, adherence to aerobic exercise guidelines among postmenopausal women is low (<30%) and aerobic exercise does not consistently enhance endothelial function in estrogen-deficient postmenopausal women. High-resistance inspiratory muscle strength training (IMST) is a time-efficient, adherable lifestyle intervention that involves inhaling against resistance through a handheld device (30 breaths/day). Here, we present the protocol for a randomized controlled trial investigating the efficacy of 3 months of high-resistance IMST compared to guideline-based, "standard-of-care" aerobic exercise training for decreasing SBP and improving endothelial function in estrogen-deficient postmenopausal women with above-normal SBP (120-159 mmHg) at baseline (ClinicalTrials.gov Identifier: NCT05000515). Methods: A randomized, single-blind, parallel-group design clinical trial will be conducted in 72 (36/group) estrogen-deficient postmenopausal women with above-normal SBP. Participants will complete baseline testing and then be randomized to either 3 months of high-resistance IMST (30 breaths/day, 6 days/week, 75% maximal inspiratory pressure) or moderate-intensity aerobic exercise training (brisk walking 25 min/day, 6 days/week, 40-60% heart rate reserve). Outcome measures will be assessed after 3 months of either intervention. Following end-intervention testing, participants will abstain from their assigned intervention for 6 weeks, after which BP and endothelial function will be assessed to evaluate the potential persistent effects of the intervention on the primary and secondary outcomes. Discussion: This study is designed to compare the effectiveness of time-efficient, high-resistance IMST to guideline-based aerobic exercise training for lowering SBP and improving endothelial function, and interrogating potential mechanisms of action, in estrogen-deficient postmenopausal women. Clinical Trial Registration: ClinicalTrials.gov, Identifier: NCT05000515.

18.
Nitric Oxide ; 125-126: 31-39, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35705144

RESUMO

Aging is associated with a decline in physiological function and exercise performance. These effects are mediated, at least in part, by an age-related decrease in the bioavailability of nitric oxide (NO), a ubiquitous gasotransmitter and regulator of myriad physiological processes. The decrease in NO bioavailability with aging is especially apparent in sedentary individuals, whereas older, physically active individuals maintain higher levels of NO with advancing age. Strategies which enhance NO bioavailability (including nutritional supplementation) have been proposed as a potential means of reducing the age-related decrease in physiological function and enhancing exercise performance and may be of interest to a range of older individuals including those taking part in competitive sport. In this brief review we discuss the effects of aging on physiological function and endurance exercise performance, and the potential role of changes in NO bioavailability in these processes. We also provide a summary of current evidence for dietary supplementation with substrates for NO production - including inorganic nitrate and nitrite, l-arginine and l-citrulline - for improving exercise capacity/performance in older adults. Additionally, we discuss the (limited) evidence on the effects of (poly)phenols and other dietary antioxidants on NO bioavailability in older individuals. Finally, we provide suggestions for future research.


Assuntos
Citrulina , Óxido Nítrico , Idoso , Envelhecimento , Atletas , Citrulina/farmacologia , Suplementos Nutricionais , Exercício Físico/fisiologia , Humanos , Nitratos/farmacologia
19.
Exp Physiol ; 107(5): 541-552, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294784

RESUMO

NEW FINDINGS: What is the central question of this study? Use of the passive leg movement (PLM) test, a non-invasive assessment of microvascular function, is on the rise. However, PLM reliability in men has not been adequately investigated, nor has such reliability data, in men, been compared to the most commonly employed vascular function assessment, flow-mediated vasodilation (FMD). What is the main finding and its importance? PLM is a reliable method to assess vascular function in men, and is comparable to values previously reported for PLM in women, and for FMD. Given the importance of vascular function as a predictor of cardiovascular disease risk, these data support the utility of PLM as a clinically relevant measurement. ABSTRACT: Although vascular function is an independent predictor of cardiovascular disease risk, and therefore has significant prognostic value, there is currently not a single clinically accepted method of assessment. The passive leg movement (PLM) assessment predominantly reflects microvascular endothelium-dependent vasodilation and can identify decrements in vascular function with advancing age and pathology. Reliability of the PLM model was only recently determined in women, and has not been adequately investigated in men. Twenty healthy men (age: 27 ± 2 year) were studied on three separate experimental days, resulting in three within-day and three between-day trials. The hyperemic response to PLM was assessed with Doppler ultrasound, and expressed as the absolute peak in leg blood flow (LBFpeak ), change from baseline to peak (ΔLBFpeak ), absolute area under the curve (LBFAUC ), and change in AUC from baseline (ΔLBFAUC ). PLM-induced hyperemia yielded within-day coefficients of variation (CV) from 10.9 to 22.9%, intraclass correlation coefficients (ICC) from 0.82 to 0.90, standard error of the measurement (SEM) from 8.3 to 17.2%, and Pearson's correlation coefficients (r) from 0.56 to 0.81. Between-day assessments of PLM hyperemia resulted in CV from 14.4 to 25%, ICC from 0.75 to 0.87, SEM from 9.8 to 19.8%, and r from 0.46 to 0.75. Similar to previous reports in women, the hyperemic responses to PLM in men display moderate-to-high reliability, and are comparable to reliability data for brachial artery flow mediated vasodilation. These positive reliability findings further support the utility of PLM as a clinical measurement of vascular function and cardiovascular disease risk.


Assuntos
Doenças Cardiovasculares , Hiperemia , Adulto , Artéria Braquial , Endotélio Vascular , Feminino , Humanos , Perna (Membro)/irrigação sanguínea , Masculino , Movimento/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Reprodutibilidade dos Testes , Vasodilatação/fisiologia
20.
Auton Neurosci ; 239: 102969, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259576

RESUMO

The role of nitric oxide (NO) as a modulator of functional sympatholysis has been debated in the literature, but the preponderance of evidence suggests that the magnitude of NO-mediated dilation is restrained by sympathetic vasoconstriction. Therefore, we hypothesized that passive leg movement (PLM)-induced vasodilation, which is predominantly NO-mediated, would be attenuated by an exercise-induced increase in muscle sympathetic nerve activity (MSNA). To test this hypothesis, MSNA, leg blood flow (LBF), and mean arterial blood pressure (MAP) were measured and leg vascular conductance (LVC) calculated in 9 healthy subjects (30 ± 3 yr), during PLM with and without sympathoexcitation evoked by arm-cranking exercise (ACE), at 25, 50, and 75% of maximal capacity. During this incremental intensity ACE, MSNA increased significantly (26 ± 2, 34 ± 3, and 41 ± 5 bursts/100 HB, respectively). LVC during PLM fell markedly (~1.2 ml/min/mmHg) with each increase in ACE intensity, and there was a strong relationship (r = 0.92; p < 0.05) between ∆MSNA and ∆Peak LVC induced by the three intensities of ACE. Thus, as anticipated, this study reveals that the, NO-mediated, PLM-induced vasodilation, is significantly and proportionally attenuated by exercise-induced MSNA. This finding highlights the dominant role of MSNA in regulating skeletal muscle vascular conductance.


Assuntos
Hipotensão , Vasodilatação , Pressão Sanguínea , Humanos , Perna (Membro) , Músculo Esquelético/inervação , Óxido Nítrico , Fluxo Sanguíneo Regional/fisiologia , Sistema Nervoso Simpático/fisiologia , Vasoconstrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...